
UNIT-V 

GRAPHS 

1. BASIC CONCEPTS 

INTRODUCTION 

A graph is an abstract data structure that is used to implement the mathematical concept of 

graphs. It is basically a collection of vertices (also called nodes) and edges that connect these 

vertices. A graph is often viewed as a generalization of the tree structure, where instead of 

having a purely parent-to-child relationship between tree nodes, any kind of complex 

relationship can exist. 

 

WHY GRAPHS ARE USEFUL 

Graphs are widely used to model any situation where entities or things are related to each other 

in pairs. For example, the following information can be represented by graphs: 

 Family trees:   in which the member nodes have an edge from parent to each of their 

children. 

 Transportation networks : in which nodes are airports, intersections, ports, etc. The edges 

can be airline flights, one-way roads, shipping routes, etc. 

 

DEFINATION: 

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G) 

represents the edges that connect these vertices. 

We have two types of Graphs. Basically: 

1. UNDIRECTED GRAPH 

2. DIRECTED GRAPH 

UNDIRECTED GRAPH: 

Shows a graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D), 

(D,E), (C, E)}. Note that there are five vertices or nodes and six edges in the graph. 
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FIGURE  5.1 

 

A graph can be directed or undirected. In an undirected graph, edges do not have any direction 

associated with them. That is, if an edge is drawn between nodes A and B, then the nodes can be 

traversed from A to B as well as from B to A. Figure 5.1 shows an undirected graph because it 

does not give any information about the direction of the edges. 

 

DIRECTED GRAPH: 

A directed graph G, also known as a digraph, is a graph in which every edge has a direction 

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For an 

edge (u, v), 

 The edge begins at u and terminates at v. 

 u is known as the origin or initial point of e. Correspondingly, v is known as the 

destination or terminal point of e. 

 u is the predecessor of v. Correspondingly, v is the successor of u. 

 Nodes u and v are adjacent to each other. 

 

FIGURE 5.2 

Which shows a directed graph. In a directed graph, edges form an ordered pair. If there is an 

edge from A to B, then there is a path from A to B but not from B to A. The edge (A, B) is said 

to initiate from node A (also known as initial node) and terminate at node B (terminal node). 
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2. REPRESENTATION OF GRAPHS 

There are two common ways of storing graphs in the computer’s memory. They are: 

 Sequential representation by using an adjacency matrix. 

 Linked representation by using an adjacency list that stores the neighbours of a node 

using a linked list. 

2.1 ADJACENCY  MATRIX  REPRESENTATION 

An adjacency matrix is used to represent which nodes are adjacent to one another.  

By definition: Two nodes are said to be adjacent if there is an edge connecting them. 

In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u to v.       

That is, if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G having 

n nodes, the adjacency matrix will have the dimension of n X n. 

In an adjacency matrix, the rows and columns are labelled by graph vertices. 

 An entry aij in the adjacency matrix will contain 1, if vertices vi and vj are adjacent to 

each  other. 

 However, if the nodes are not adjacent, aij will be set to zero. 

 

 

FIGURE  5.3  Adjacency Matrix Entry 

 

Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix. 

The entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the 

order of nodes will result in a different adjacency matrix. 
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Figure  5.4  shows some graphs and their corresponding adjacency matrices. 

 

From the above examples, we can draw the following conclusions: 

 For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal. 

 The adjacency matrix of an undirected graph is symmetric. 

 The memory use of an adjacency matrix is O(n2), where n is the number of nodes in the 

graph. 

 Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of 

edges in the graph. 

 The adjacency matrix for a weighted graph contains the weights of the edges connecting 

the nodes. 

Now let us discuss the powers of an adjacency matrix: 

From adjacency matrix A1, we can conclude that an entry 1 in the ith row and jth column means 

that there exists a path of length 1 from vi to vj. Now consider, A2, A3, and A4. 

Any entry aij = 1 if aik = akj = 1. That is, if there is an edge (vi, vk) and (vk, vj), then there is a 

path from vi to vj of length 2. 

 

FIGURE 5.5 Directed graph with its adjacency matrix 
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Now, based on the above calculations, we define matrix B as: 

Br = A1 + A2 + A3 + ... + Ar 

 

FIGURE 5.6 Path Matrix Entry 

The main goal to define matrix B is to obtain the path matrix P. The path matrix P can be 

calculated from B by setting an entry Pij = 1, if Bij is non-zero and Pij = 0, if otherwise. The path 

matrix is used to show whether there exists a simple path from node vi to vj or not. 

Let us now calculate matrix B and matrix P using the above discussion. 
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2.2 ADJACENCY LINKED LIST REPRESEENTATION 

 
 An adjacency list is another way in which graphs can be represented in the computer’s 

memory. 

 This structure consists of a list of all nodes in G. 

 Furthermore, every node is in turn linked to its own list that contains the names of all 

other nodes that are adjacent to it. 

The key advantages of using an adjacency list are: 

 It is easy to follow and clearly shows the adjacent nodes of a particular node. 

 It is often used for storing graphs that have a small-to-moderate number of edges. That is, 

an adjacency list is preferred for representing sparse graphs in the computer’s memory; 

otherwise, an adjacency matrix is a good choice. 

 Adding new nodes in G is easy and straightforward when G is represented using an 

adjacency list. Adding new nodes in an adjacency matrix is a difficult task, as the size of 

the matrix needs to be changed and existing nodes may have to be reordered. 
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FIGURE 5.7 Graph G and its adjacency list 

 

 For a directed graph, the sum of the lengths of all adjacency lists is equal to the number 

of edges in G. 

 However, for an undirected graph, the sum of the lengths of all adjacency lists is equal to 

twice the number of edges in G because an edge (u, v) means an edge from node u to v as 

well as an edge from v to u. 

 Adjacency lists can also be modified to store weighted graphs. 

Let us now see an adjacency list for an undirected graph as well as a weighted graph. 

 

FIGURE 5.8  Adjacency list for an undirected graph and a weighted graph 
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PROGRAMMING EXAMPLE 

 

1. Write a program to create a graph of n vertices using an adjacency list. Also write the 

code to read and print its information and finally to delete the graph. 

#include <stdio.h> 

#include <conio.h> 

#include <alloc.h> 

struct node 

{ 

char vertex; 

struct node *next; 

}; 

struct node *gnode; 

void displayGraph(struct node *adj[], int no_of_nodes); 

void deleteGraph(struct node *adj[], int no_of_nodes); 

void createGraph(struct node *adj[], int no_of_nodes); 

int main() 

{ 

struct node *Adj[10]; 

int i, no_of_nodes; 

clrscr(); 

printf("\n Enter the number of nodes in G: "); 

scanf("%d", &no_of_nodes); 

for(i = 0; i < no_of_nodes; i++) 

Adj[i] = NULL; 

createGraph(Adj, no_of_nodes); 

printf("\n The graph is: "); 

displayGraph(Adj, no_of_nodes); 

deleteGraph(Adj, no_of_nodes); 

getch(); 

return 0; 

} 
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void createGraph(struct node *Adj[], int no_of_nodes) 

{ 

struct node *new_node, *last; 

int i, j, n, val; 

for(i = 0; i < no_of_nodes; i++) 

{ 

last = NULL; 

printf("\n Enter the number of neighbours of %d: ", i); 

scanf("%d", &n); 

for(j = 1; j <= n; j++) 

{ 

printf("\n Enter the neighbour %d of %d: ", j, i); 

scanf("%d", &val); 

new_node = (struct node *) malloc(sizeof(struct node)); 

new_node –> vertex = val; 

new_node –> next = NULL; 

if (Adj[i] == NULL) 

Adj[i] = new_node; 

else 

last –> next = new_node; 

last = new_node 

} 

} 

} 

void displayGraph (struct node *Adj[], int no_of_nodes) 

Graphs 393 

{ 

struct node *ptr; 

int i; 

for(i = 0; i < no_of_nodes; i++) 

{ 
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ptr = Adj[i]; 

printf("\n The neighbours of node %d are:", i); 

while(ptr != NULL) 

{ 

printf("\t%d", ptr –> vertex); 

ptr = ptr –> next; 

} 

} 

} 

void deleteGraph (struct node *Adj[], int no_of_nodes) 

{ 

int i; 

struct node *temp, *ptr; 

for(i = 0; i <= no_of_nodes; i++) 

{ 

ptr = Adj[i]; 

while(ptr ! = NULL) 

{ 

temp = ptr; 

ptr = ptr –> next; 

free(temp); 

} 

Adj[i] = NULL; 

} 

} 

Output 

Enter the number of nodes in G: 3 

Enter the number of neighbours of 0: 1 

Enter the neighbour 1 of 0: 2 

Enter the number of neighbours of 1: 2 

Enter the neighbour 1 of 1: 0 
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Enter the neighbour 2 of 1: 2 

Enter the number of neighbours of 2: 1 

Enter the neighbour 1 of 2: 1 

The neighbours of node 0 are: 1 

The neighbours of node 1 are: 0 2 

The neighbours of node 2 are: 0 

 

Note If the graph in the above program had been a weighted graph, then the structure of the node 

would have been: 

typedef struct node 

{ 

int vertex; 

int weight; 

struct node *next; 

}; 

 

3.GRAPH TRAVERSALS 

There are two standard methods of graph traversal. These two methods are: 

1. Breadth-first search 

2. Depth-first search 

1.Breadth-First Search Algorithm 

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores 

all the neighbouring nodes. Then for each of those nearest nodes, the algorithm explores their 

unexplored neighbour nodes, and so on, until it finds the goal. 

ALGORITHM 

Step 1: SET STATUS = 1 (ready state) 

for each node in G 

Step 2: Enqueue the starting node A 

and set its STATUS = 2 

(waiting state) 

Step 3: Repeat Steps 4 and 5 until QUEUE is empty 
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Step 4: Dequeue a node N. Process it 

and set its STATUS = 3 

(processed state). 

Step 5: Enqueue all the neighbours of 

N that are in the ready state 

(whose STATUS = 1) and set 

their STATUS = 2 

(waiting state) 

[END OF LOOP] 

Step 6: EXIT 

 

 

FIGURE 5.9 Graph G And Its Adjacnecy List 

EXAMPLE  

Consider the graph G given in Fig. 5.9.The adjacency list of G is also given. Assume that G 

represents the daily flights between different cities and we want to fly from city A to I with 

minimum stops. That is, find the minimum path P from A to I given that every edge has a length 

of 1. 

SOLUTION: 

The minimum path P can be found by applying the breadth-first search algorithm that begins at 

city A and ends when I is encountered. During the execution of the algorithm, we use two arrays: 

 1. QUEUE 

 2. ORIG 

 While QUEUE is used to hold the nodes that have to be processed, 

 ORIG is used to keep track of the origin of each edge. 

 Initially, FRONT = REAR = –1. 
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The algorithm for this is as follows: 

(a) Add A to QUEUE and add NULL to ORIG. 

FRONT = 0 QUEUE = A 

REAR   =  0 ORIG    = \0 

(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE)     

and enqueue the neighbours of A. Also, add A as the ORIG of its neighbours. 

FRONT = 1 QUEUE = A B C D 

REAR    = 3 ORIG    = \0 A A A 

(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also, 

add B as the ORIG of its neighbours. 

FRONT = 2 QUEUE = A B C D E 

REAR   =  4 ORIG    = \0 A A A B 

(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also, 

add C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has 

already been added to the queue and it is not in the Ready state, we will not add B and only add 

G. 

FRONT = 3 QUEUE = A B C D E G 

REAR   = 5 ORIG     = \0 A A A B C 

(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also, 

add D as the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of 

them have already been added to the queue and they are not in the Ready state, we will not add 

them again. 

FRONT = 4 QUEUE = A B C D E G 

REAR   = 5 ORIG     = \0 A A A B C 

(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, 

add E as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has 

already been added to the queue and it is not in the Ready state, we will not add C and add only 

F. 

FRONT = 5 QUEUE = A B C D E G F 

REAR   = 6 ORIG     = \0 A A A B C E 
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(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also, 

add G as the ORIG of its neighbours. Note that G has three neighbours F, H, and I. 

FRONT = 6 QUEUE = A B C D E G F H  I 

REAR   = 9 ORIG     = \0 A A A B C E G G 

 

Since F has already been added to the queue, we will only add H and I. As I is our final 

destination, we stop the execution of this algorithm as soon as it is encountered and added to the 

QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have 

P as A -> C -> G -> I. 

Features of Breadth-First Search Algorithm 

Space complexity: 

 The space complexity is therefore proportional to the number of nodes at the deepest 

level of the graph.  

 Given a graph with branching factor b (number of children at each node) and depth d, the 

asymptotic space complexity is the number of nodes at the deepest level O(bd). 

The space complexity can also be expressed as O ( | E | + | V | ), where | E | is the total 

number of edges in G and | V | is the number of nodes or vertices. 

Time Complexity: 

 In the worst case, breadth-first search has to traverse through all paths to all possible 

nodes, thus the time complexity of this algorithm asymptotically approaches O(bd). 

 However, the time complexity can also be expressed as O( | E | + | V | ), since every 

vertex and every edge will be explored in the worst case. 

Completeness: 

 Breadth-first search is said to be a complete algorithm because if there is a solution, 

breadth-first search will find it regardless of the kind of graph. But in case of an infinite graph 

where there is no possible solution, it will diverge. 

Optimality: 

 Breadth-first search is optimal for a graph that has edges of equal length, since it always 

returns the result with the fewest edges between the start node and the goal node. 

 we have weighted graphs that have costs associated with each edge, so the goal next to 

the start does not have to be the cheapest goal available. 
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Applications of Breadth-First Search Algorithm 

Breadth-first search can be used to solve many problems such as: 

 Finding all connected components in a graph G. 

 Finding all nodes within an individual connected component. 

 Finding the shortest path between two nodes, u and v, of an unweighted graph. 

 Finding the shortest path between two nodes, u and v, of a weighted graph. 

 

Programming Example 

2. Write a program to implement the breadth-first search algorithm. 

#include <stdio.h> 

#define MAX 10 

void breadth_first_search(int adj[][MAX],int visited[],int start) 

{ 

int queue[MAX],rear = –1,front =– 1, i; 

queue[++rear] = start; 

visited[start] = 1; 

while(rear != front) 

{ 

start = queue[++front]; 

if(start == 4) 

printf("5\t"); 

else 

printf("%c \t",start + 65); 

for(i = 0; i < MAX; i++) 

{ 
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if(adj[start][i] == 1 && visited[i] == 0) 

{ 

queue[++rear] = i; 

visited[i] = 1; 

} 

} 

} 

} 

int main() 

{ 

int visited[MAX] = {0}; 

int adj[MAX][MAX], i, j; 

printf("\n Enter the adjacency matrix: "); 

for(i = 0; i < MAX; i++) 

for(j = 0; j < MAX; j++) 

scanf("%d", &adj[i][j]); 

breadth_first_search(adj,visited,0); 

return 0; 

} 

Output 

Enter the adjacency matrix: 

0 1 0 1 0 

1 0 1 1 0 

0 1 0 0 1 

1 1 0 0 1 

0 0 1 1 0 

A B D C E 
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2. Depth First Algorithm 

The depth-first search algorithm progresses by expanding the starting node of G and then going 

deeper and deeper until the goal node is found, or until a node that has no children is 

encountered. 

When a dead-end is reached, the algorithm backtracks, returning to the most recent node that has 

not been completely explored. 

Algorithm 

Step 1: SET STATUS = 1 (ready state) for each node in G 

Step 2: Push the starting node A on the stack and set 

its STATUS = 2 (waiting state) 

Step 3: Repeat Steps 4 and 5 until STACK is empty 

Step 4: Pop the top node N. Process it and set its 

STATUS = 3 (processed state) 

Step 5: Push on the stack all the neighbours of N that 

are in the ready state (whose STATUS = 1) and 

set their STATUS = 2 (waiting state) 

[END OF LOOP] 

Step 6: EXIT 

 

 

FIGURE 5.10  Graph G And Its Adjacency List 

Example: 

Consider the graph G given in. The adjacency list of G is also given. Suppose we want to print 

all the nodes that can be reached from the node H (including H itself). One alternative is to use a 

depth-first search of G starting at node H. The procedure can be explained here. 
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Solution: 

(a) Push H onto the stack. 

STACK: H 

(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H onto the 

stack that are in the ready state. The STACK now becomes 

PRINT: H    STACK: E, I 

 

(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the 

stack that are in the ready state. The STACK now becomes 

PRINT: I    STACK: E, F 

 

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the 

stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added, 

as H is not in the ready state.) The STACK now becomes 

PRINT: F    STACK: E, C 

 

e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the 

stack that are in the ready state. The STACK now becomes 

PRINT: C    STACK: E, B, G 

 

(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the 

stack that are in the ready state. Since there are no neighbours of G that are in the ready state, 

no push operation is performed. The STACK now becomes 

PRINT: G    STACK: E, B 

 

(g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the 

stack that are in the ready state. Since there are no neighbours of B that are in the ready state, 

no push operation is performed. The STACK now becomes 

PRINT: B    STACK: E 
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h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the 

stack that are in the ready state. Since there are no neighbours of E that are in the ready state, 

no push operation is performed. The STACK now becomes empty. 

PRINT: E    STACK: 

 

Since the STACK is now empty, the depth-first search of G starting at node H is complete and 

the nodes which were printed are:  

H, I, F, C, G, B, E 

These are the nodes which are reachable from the node H. 

Features of Depth-First Search Algorithm 

Space complexity:  

The space complexity of a depth-first search is lower than that of a breadth first search. 

Time complexity: 

The time complexity of a depth-first search is proportional to the number of vertices plus the 

number of edges in the graphs that are traversed. The time complexity can be given as 

(O(|V|+|E|)). 

Completeness: 

 Depth-first search is said to be a complete algorithm. If there is a solution, depthfirst search will 

find it regardless of the kind of graph. But in case of an infinite graph, where there is no possible 

solution, it will diverge. 

 

Applications of Depth-First Search Algorithm 

Depth-first search is useful for: 

 Finding a path between two specified nodes, u and v, of an unweighted graph. 

 Finding a path between two specified nodes, u and v, of a weighted graph. 

 Finding whether a graph is connected or not. 

 Computing the spanning tree of a connected graph. 
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Programming Example: 

3. Write a program to implement the depth-first search algorithm. 

#include <stdio.h> 

#define MAX 5 

void depth_first_search(int adj[][MAX],int visited[],int start) 

{ 

int stack[MAX]; 

int top = –1, i; 

printf("%c–",start + 65); 

visited[start] = 1; 

stack[++top] = start; 

while(top ! = –1) 

{ 

start = stack[top]; 

for(i = 0; i < MAX; i++) 

{ 

if(adj[start][i] && visited[i] == 0) 

{ 

stack[++top] = i; 

printf("%c–", i + 65); 

visited[i] = 1; 

break; 

} 

} 

if(i == MAX) 

top––; 

} 

} 

int main() 

{ 

int adj[MAX][MAX]; 
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int visited[MAX] = {0}, i, j; 

400 Data Structures Using C 

printf("\n Enter the adjacency matrix: "); 

for(i = 0; i < MAX; i++) 

for(j = 0; j < MAX; j++) 

scanf("%d", &adj[i][j]); 

printf("DFS Traversal: "); 

depth_first_search(adj,visited,0); 

printf("\n"); 

return 0; 

} 

Output 

Enter the adjacency matrix: 

0 1 0 1 0 

1 0 1 1 0 

0 1 0 0 1 

1 1 0 0 1 

0 0 1 1 0 

DFS Traversal: A –> C –> E –> 

 

APPLICATIONS 

MINIMUM SPANNING TREES: 

 A spanning tree of a connected, undirected graph G is a sub-graph of G which is a tree 

that connects all the vertices together 

 A graph G can have many different spanning trees. 

 We can assign weights to each edge (which is a number that represents how unfavourable 

the edge is), and use it to assign a weight to a spanning tree by calculating the sum of the 

weights of the edges in that spanning tree. 

 A minimum spanning tree (MST) is defined as a spanning tree with weight less than or 

equal to the weight of every other spanning tree. In other words, a minimum spanning 
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tree is a spanning tree that has weights associated with its edges, and the total weight of 

the tree (the sum of the weights of its edges) is at a minimum. 

 

Example: Consider an unweighted graph G given below (Fig. 5.11). From G, we can draw many 

distinct spanning trees. Eight of them are given here. For an unweighted graph, every spanning 

tree is a minimum spanning tree. 

 

 

 

FIGURE 5.11  Unweighted Graph And Its Spanning Trees 

 

EXAMPLE: Consider a weighted graph G shown in Fig. 5.12. From G, we can draw three 

distinct spanning trees. But only a single minimum spanning tree can be obtained, that is, the one 

that has the minimum weight (cost) associated with it. Of all the spanning trees given in Fig. 

5.12, the one that is highlighted is called the minimum spanning tree, as it has the lowest cost 

associated with it. 

 

 

FIGURE 5.12  Weighted Graph And Its Spanning Trees. 
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APPLICATIONS  FOR MINIMUM SPANNING TREES: 

 MST’S is  widely used for designing networks. 

 MST’S are used to find airlane routes. 

 MST’S are also used to find the cheapest way to connect terminals, such as cities, 

electronic components or computers via roads, airlines, railways, wires or telephone lines. 

 MST’S  are applied in routing algorithms for finding the most efficient path. 

 

We  have two types of ALGORITHMS in Minimum Spanning Trees. They are: 

 1. PRIM’S ALGORITHM 

 2. KRUSKAL’S ALGORITHM 

1.PRIM’S ALGORITHM 

 Prim’s algorithm is a greedy algorithm that is used to form a minimum spanning tree for 

a connected weighted undirected graph. 

 In other words, the algorithm builds a tree that includes every vertex and a subset of the 

edges in such a way that the total weight of all the edges in the tree is minimized. 

For this, the algorithm maintains three sets of vertices which can be given as below: 

 Tree vertices  Vertices that are a part of the minimum spanning tree T. 

 Fringe vertices  Vertices that are currently not a part of T, but are adjacent to some tree   

vertex. 

 Unseen vertices  Vertices that are neither tree vertices nor fringe vertices fall under this 

category. 

 

ALGORITHM 

Step 1: Select a starting vertex 

Step 2: Repeat Steps 3 and 4 until there are fringe vertices 

Step 3: Select an edge e connecting the tree vertex and 

fringe vertex that has minimum weight 

Step 4: Add the selected edge and the vertex to the 

minimum spanning tree T 

[END OF LOOP] 

Step 5: EXIT 
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EXAMPLE: Construct a minimum spanning tree of the graph given in Fig. 5.13 

 

 

FIGURE 5.13 

Step 1: Choose a starting vertex A. 

Step 2: Add the fringe vertices (that are adjacent to A). The edges connecting the vertex and 

fringe vertices are shown with dotted lines. 

Step 3: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge 

connecting A and C has less weight, add C to the tree. Now C is not a fringe vertex but a tree 

vertex. 

Step 4: Add the fringe vertices (that are adjacent to C). 

Step 5: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge 

connecting C and B has less weight, add B to the tree. Now B is not a fringe vertex but a tree 

vertex. 

Step 6: Add the fringe vertices (that are adjacent to B). 

Step 7: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the 

edge connecting B and D has less weight, add D to the tree. Now D is not a fringe vertex but a 

tree vertex. 

Step 8: Note, now node E is not connected, so we will add it in the tree because a minimum 

spanning tree is one in which all the n nodes are connected with n–1 edges that have minimum 

weight. So, the minimum spanning tree can now be given as, 
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2.KRUSKAL’S  ALGORITHM 

 Kruskal’s algorithm is used to find the minimum spanning tree for a connected weighted 

graph. 

 The algorithm aims to find a subset of the edges that forms a tree that includes every 

vertex. The total weight of all the edges in the tree is minimized. 

 However, if the graph is not connected, then it finds a minimum spanning forest. Note 

that a forest is a collection of trees. Similarly, a minimum spanning forest is a collection 

of minimum spanning trees.  

 Kruskal’s algorithm is an example of a greedy algorithm, as it makes the locally optimal 

choice at each stage with the hope of finding the global optimum. 

 

ALGORITHM 

Step 1: Create a forest in such a way that each graph is a separate 

tree. 

Step 2: Create a priority queue Q that contains all the edges of the 

graph. 

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY 

Step 4: Remove an edge from Q 
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Step 5: IF the edge obtained in Step 4 connects two different trees, 

then Add it to the forest (for combining two trees into one 

tree). 

ELSE 

Discard the edge 

Step 6: END 

 

EXAMPLE: Apply Kruskal’s algorithm on the graph given in Fig. 5.14. 

Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}} 

MST = {} 

Q = {(A, D), (E, F), (C, E), (E, D), (C, D), (D, F), 

(A, C), (A, B), (B, C)} 

 

 

FIGURE 5.14 

Step 1: Remove the edge (A, D) from Q and make the following changes: 

 

 

F = {{A, D}, {B}, {C}, {E}, {F}} 

MST = {A, D} 

Q = {(E, F), (C, E), (E, D), (C, D), 

(D, F), (A, C), (A, B), (B, C)} 
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Step 2: Remove the edge (E, F) from Q and make the following changes: 

 

 

F = {{A, D}, {B}, {C}, {E, F}} 

MST = {(A, D), (E, F)} 

Q = {(C, E), (E, D), (C, D), (D, F), 

(A, C), (A, B), (B, C)} 

Step 3: Remove the edge (C, E) from Q and make the following changes: 

 

 

F = {{A, D}, {B}, {C, E, F}} 

MST = {(A, D), (C, E), (E, F)} 

Q = {(E, D), (C, D), (D, F), (A, C), 

(A, B), (B, C)} 

 

Step 4: Remove the edge (E, D) from Q and make the following changes: 

 

F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q= {(C, D), (D, F), (A, C), (A, B), (B, C)} 
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Step 5: Remove the edge (C, D) from Q. Note that this edge does not connect different trees, so 

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST. 

Therefore, 

F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q = {(D, F), (A, C), (A, B), (B, C)} 

Step 6: Remove the edge (D, F) from Q. Note that this edge does not connect different trees, so 

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST. 

F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q = {(A, C), (A, B), (B, C)} 

Step 7: Remove the edge (A, C) from Q. Note that this edge does not connect different trees, so 

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST. 

F = {{A, C, D, E, F}, {B}} 

MST = {(A, D), (C, E), (E, F), (E, D)} 

Q = {(A, B), (B, C)} 

Step 8: Remove the edge (A, B) from Q and make the following changes: 

 

F = {A, B, C, D, E, F} 

MST = {(A, D), (C, E), (E, F), (E,D), 

(A, B)} 

Q = {(B, C)} 
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Step 9: The algorithm continues until Q is empty. Since the entire forest has become one tree, all 

the remaining edges will simply be discarded. The resultant MS can be given as shown below 

 

 

 

F = {A, B, C, D, E, F} 

MST = {(A, D), (C, E), (E, F), (E,D), 

(A, B)} 

Q = {} 

 

PROGRAMMING EXAMPLE: 

5. Write a program which finds the cost of a minimum spanning tree. 

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

int adj[MAX][MAX], tree[MAX][MAX], n; 

void readmatrix() 

{ 

int i, j; 

printf(“\n Enter the number of nodes in the Graph : “); 

scanf(“%d”, &n); 

printf(“\n Enter the adjacency matrix of the Graph”); 

for (i = 1; i <= n; i++) 

for (j = 1; j <= n; j++) 

scanf(“%d”, &adj[i][j]); 

} 

int spanningtree(int src) 

{ 
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int visited[MAX], d[MAX], parent[MAX]; 

int i, j, k, min, u, v, cost; 

for (i = 1; i <= n; i++) 

{ 

d[i] = adj[src][i]; 

visited[i] = 0; 

parent[i] = src; 

} 

visited[src] = 1; 

cost = 0; 

k = 1; 

for (i = 1; i < n; i++) 

{ 

min = 9999; 

for (j = 1; j <= n; j++) 

{ 

if (visited[j]==0 && d[j] < min) 

{ 

min = d[j]; 

u = j; 

cost += d[u]; 

} 

} 

visited[u] = 1; 

//cost = cost + d[u]; 

tree[k][1] = parent[u]; 

tree[k++][2] = u; 

for (v = 1; v <= n; v++) 

if (visited[v]==0 && (adj[u][v] < d[v])) 

{ 

d[v] = adj[u][v]; 
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parent[v] = u; 

} 

} 

return cost; 

} 

void display(int cost) 

{ 

int i; 

printf(“\n The Edges of the Mininum Spanning Tree are”); 

for (i = 1; i < n; i++) 

printf(“ %d %d \n”, tree[i][1], tree[i][2]); 

printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost); 

} 

main() 

{ 

int source, treecost; 

readmatrix(); 

printf(“\n Enter the Source : “); 

scanf(“%d”, &source); 

treecost = spanningtree(source); 

display(treecost); 

return 0; 

} 

 

 

 

 

 

 

 

 

www.Jntufastupdates.com 31



Output 

Enter the number of nodes in the Graph : 4 

Enter the adjacency matrix : 0 1 1 0 

0 0 0 1 

0 1 0 0 

1 0 1 0 

Enter the source : 1 

The edges of the Minimum Spanning Tree are 1 4 

4 2 

2 3 

The total cost of the Minimum Spanning Tree is : 1 

 

Dijkstra’s Algorithm 

Dijkstra’s algorithm, given by a Dutch scientist Edsger Dijkstra in 1959, is used to find the 

shortest path tree. This algorithm is widely used in network routing protocols, most notably IS-IS 

and OSPF (Open Shortest Path First). 

Given a graph G and a source node A, the algorithm is used to find the shortest path (one having 

the lowest cost) between A (source node) and every other node. Moreover, Dijkstra’s algorithm 

is also used for finding the costs of the shortest paths from a source node to a destination node. 

For example, if we draw a graph in which nodes represent the cities and weighted edges 

represent the driving distances between pairs of cities connected by a direct road, then Dijkstra’s 

algorithm when applied gives the shortest route between one city and all other cities. 

 

ALGORITHM 

 Dijkstra’s algorithm is used to find the length of an optimal path between two nodes in a 

graph.  

 The term optimal can mean anything, shortest, cheapest, or fastest.  

 If we start the algorithm with an initial node, then the distance of a node Y can be given 

as the distance from the initial node to that node. 
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1. Select the source node also called the initial node 

2. Define an empty set N that will be used to hold nodes to which a shortest path has been found. 

3. Label the initial node with , and insert it into N. 

4. Repeat Steps 5 to 7 until the destination node is in N or there are no more labelled nodes in N. 

5. Consider each node that is not in N and is connected by an edge from the newly inserted node. 

6. (a) If the node that is not in N has no label then SET the label of the node = the label of the   

newly inserted node + the length of the edge. 

(b) Else if the node that is not in N was already labelled, then SET its new 

label = minimum (label of newly inserted vertex + length of edge, old label) 

7. Pick a node not in N that has the smallest label assigned to it and add it 

to N. 

 

Dijkstra’s algorithm labels every node in the graph where the labels represent the distance 

(cost) from the source node to that node. 

There are two kinds of labels: temporary and permanent. 

Temporary labels are assigned to nodes that have not been reached, while permanent labels are 

given to nodes that have been reached and their distance (cost) to the source node is known. A 

node must be a permanent label or a temporary label, but not both. 

The execution of this algorithm will produce either of the following two results: 

1. If the destination node is labelled, then the label will in turn represent the distance from the 

source node to the destination node. 

2. If the destination node is not labelled, then there is no path from the source to the destination 

node. 

 

EXAMPLE: 

Consider the graph G given in Fig. 5.14. Taking D as the initial node, execute the Dijkstra’s 

algorithm on it. 
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FIGURE 5.14 

 

Step 1: Set the label of D = 0 and N = {D}. 

Step 2: Label of D = 0, B = 15, G = 23, and F = 5. Therefore, N = {D, F}. 

Step 3: Label of D = 0, B = 15, G has been re-labelled 18 because minimum 

(5 + 13, 23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D, 

F, C}. 

Step 4: Label of D = 0, B = 15, G = 18. Therefore, N = {D, F, C, B}. 

Step 5: Label of D = 0, B = 15, G = 18 and A = 19 (15 + 4). Therefore, N = 

{D, F, C, B, G}. 

Step 6: Label of D = 0 and A = 19. Therefore, N = {D, F, C, B, G, A} 

Note that we have no labels for node E; this means that E is not reachable from D. Only the 

nodes that are in N are reachable from B. 

The running time of Dijkstra’s algorithm can be given as O(|V|2+|E|)=O(|V|2) where V is the set 

of vertices and E in the graph. 
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Warshall’s Algorithm 

If a graph G is given as G=(V, E), where V is the set of vertices and E is the set of edges, the 

path matrix of G can be found as, P = A + A2 + A3 + ... + An. 

This is a lengthy process, so Warshall has given a very efficient algorithm to calculate the path 

matrix. Warshall’s algorithm defines matrices P0, P1, P2, º, Pn. 

 

Path Matrix Entry 

 This means that if P0[i][j] = 1, then there exists an edge from node vi to vj.  

 If P1[i][j] = 1, then there exists an edge from vi to vj that does not use any other vertex 

except v1. 

Hence, the path matrix Pn can be calculated with the formula given as: 

Pk[i][j] = Pk–1[i][j] V (Pk–1[i][k]  ^ Pk–1[k][j]) 

where V indicates logical OR operation and ^ indicates logical AND operation. 

 

ALGORITHM 

Step 1: [ the Path Matrix] Repeat Step 2 for I = to n-1, 

where n is the number of nodes in the graph 

Step 2: Repeat Step 3 for J = to n-1 

Step 3: IF A[I][J] = , then SET P[I][J] = 

ELSE P[I][J] = 1 

[END OF LOOP] 

[END OF LOOP] 

Step 4: [Calculate the path matrix P] Repeat Step 5 for K = to n-1 

Step 5: Repeat Step 6 for I = to n-1 
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Step 6: Repeat Step 7 for J= to n-1 

Step 7: SET P [I][J] = P [I][J] V (P [I][K] 

P [K][J]) 

Step 8: EXIT 

EXAMPLE: 

Consider the graph in Fig. 13.39 and its adjacency matrix A. We can straightaway calculate the 

path matrix P using the Warshall’s algorithm. The path matrix P can be given in a single step as: 

  

GRAPH  G AND ITS PATH MATRIX 

 

PROGRAMMING EXAMPLE 

 

6. Write a program to implement Warshall’s algorithm to find the path matrix. 

#include <stdio.h> 

#include <conio.h> 

void read (int mat[5][5], int n); 

void display (int mat[5][5], int n); 

void mul(int mat[5][5], int n); 

int main() 

{ 

int adj[5][5], P[5][5], n, i, j, k; 

clrscr(); 

printf("\n Enter the number of nodes in the graph : "); 

scanf("%d", &n); 

printf("\n Enter the adjacency matrix : "); 

read(adj, n); 
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clrscr(); 

printf("\n The adjacency matrix is : "); 

display(adj, n); 

for(i=0;i<n;i++) 

{ 

for(j=0;j<n;j++) 

{ 

if(adj[i][j] == 0) 

P[i][j] = 0; 

else 

P[i][j] = 1; 

} 

} 

for(k=0; k<n;k++) 

{ 

for(i=0;i<n;i++) 

{ 

for(j=0;j<n;j++) 

P[i][j] = P[i][j] | ( P[i][k] & P[k][j]); 

} 

} 

printf("\n The Path Matrix is :"); 

display (P, n); 

getch(); 

return 0; 

} 

void read(int mat[5][5], int n) 

{ 

int i, j; 

for(i=0;i<n;i++) 

{ 
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for(j=0;j<n;j++) 

{ 

printf("\n mat[%d][%d] = ", i, j); 

scanf("%d", &mat[i][j]); 

} 

} 

} 

void display(int mat[5][5], int n) 

{ 

int i, j; 

for(i=0;i<n;i++) 

printf("\n"); 

for(j=0;j<n;j++) 

printf("%d\t", mat[i][j]); 

} 

} 

Output 

The adjacency matrix is 

0 1 1 0 

0 0 1 1 

0 0 0 1 

1 1 0 0 

Graphs 417 

The Path Matrix is 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 
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Transitive Closure of a Directed Graph 

Definition 

For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the 

transitive closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an 

edge (v, w) in E* if and only if there is a valid path from v to w in G. 

 

(a) A graph G and its 

(b) transitive closure G* 

 

Where and Why is it Needed? 

Finding the transitive closure of a directed graph is an important problem in the following 

computational tasks: 

 Transitive closure is used to find the reachability analysis of transition networks 

representing distributed and parallel systems.I 

 It is used in the construction of parsing automata in compiler construction. 

 Recently, transitive closure computation is being used to evaluate recursive database 

queries (because almost all practical recursive queries are transitive in nature). 

 

ALGORITHM 

Transitive_Closure(A, t, n) 

Step 1: SET i=1, j=1, k=1 

Step 2: Repeat Steps 3 and 4 while i<=n 

Step 3: Repeat Step 4 while j<=n 

Step 4: IF (A[i][j] = 1) 

SET t[i][j] = 1 

ELSE 

SET t[i][j] = 
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INCREMENT j 

[END OF LOOP] 

INCREMENT i 

[END OF LOOP] 

Step 5: Repeat Steps 6 to 11 while k<=n 

Step 6: Repeat Steps 7 to 1 while i<=n 

Step 7: Repeat Steps 8 and 9 while j<=n 

Step 8: SET t[i,j] = t[i][j] V (t[i][k] t[k][j]) 

Step 9: INCREMENT j 

[END OF LOOP] 

Step 10 : INCREMENT i 

[END OF LOOP] 

Step 11: INCREMENT k 

[END OF LOOP] 

Step 12: END 
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